Cost-Sensitive Analysis in Multiple Time Series Prediction

نویسندگان

  • Chamila Walgampaya
  • Mehmed M. Kantardzic
چکیده

In this paper we propose a new methodology for Cost-Benefit analysis in a multiple time series prediction problem. The proposed model is evaluated in a real world application based on a network of wireless sensors distributed in energy production plants in a region. These sensors generate multiple time series data representing energy production. To build the prediction model for total energy production in the region we have used three common forecasting techniques, Support Vector Machines (SVMs), Multilayer Perceptron (MLP), and Multiple Regression (MR). For training and testing of the models we have used the data from year 2002 to 2004. We analyzed the quality of total energy prediction with different subsets of sensors. We build our cost-benefit model for the prediction process as a function of sensors in a distributed network and estimated the optimum number of sensors that will balance the expenses of the system with the prediction accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A particle swarm optimization algorithm for minimization analysis of cost-sensitive attack graphs

To prevent an exploit, the security analyst must implement a suitable countermeasure. In this paper, we consider cost-sensitive attack graphs (CAGs) for network vulnerability analysis. In these attack graphs, a weight is assigned to each countermeasure to represent the cost of its implementation. There may be multiple countermeasures with different weights for preventing a single exploit. Also,...

متن کامل

Risk prediction based on a time series case study: Tazareh coal mine

In this work, the time series modeling was used to predict the Tazareh coal mine risks. For this purpose, initially, a monthly analysis of the risk constituents including frequency index and incidence severity index was performed. Next, a monthly time series diagram related to each one of these indices was for a nine year period of time from 2005 to 2013. After extrusion of the trend, seasonali...

متن کامل

Chaotic Analysis and Prediction of River Flows

Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...

متن کامل

پیش‌بینی دمای سطح آب خلیج فارس با استفاده از رگرسیون چندگانه و تحلیل مؤلفه‌های اصلی

Since the fluctuations of the Persian Gulf Sea Surface Temperature (PGSST) have a significant effect on the winter precipitation and water resources and agricultural productions of the south western parts of Iran, the possibility of the Winter SST prediction was evaluated by multiple regression model. The time series of PGSSTs for all seasons, during 1947-1992, were considered as predictors, an...

متن کامل

Tidal prediction using time series analysis of Buoy observations

Although tidal observations which are extracted from coastal tide gages, have higher accuracy due to their higher sampling rate, installing these types of gages can impose some spatial limitation since we cannot use every part of sea to install them. To solve this limitation, we can employ satellite altimetry observations. However, satellite altimetry observations have lower sampling rate. Acco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006